博客
关于我
TPAMI 2024 | 风格化学习:跨任务和领域的持续语义分割
阅读量:466 次
发布时间:2019-03-06

本文共 828 字,大约阅读时间需要 2 分钟。

Learning With Style: Continual Semantic Segmentation Across Tasks and Domains

风格化学习:跨任务和领域的持续语义分割

作者:Marco Toldo; Umberto Michieli; Pietro Zanuttigh


摘要

在现实世界的环境中处理图像理解的深度学习模型必须能够适应不同领域中的广泛任务。领域适应和类别增量学习分别处理领域和任务的可变性,而它们的统一解决方案仍然是一个开放问题。我们同时应对问题的两个方面,考虑到输入和标签空间中的语义变化。我们首先正式引入了任务和领域变化下的持续学习。然后,我们通过使用风格迁移技术来扩展跨领域的知识,当学习增量任务时,以及一个稳健的蒸馏框架,在增量领域变化下有效重新收集任务知识。设计的框架(LwS,风格化学习)能够跨所有遇到的领域泛化增量获得的任务知识,证明对灾难性遗忘具有鲁棒性。在多个自动驾驶数据集上的广泛实验评估表明,所提出的方法优于现有方法,这些方法在处理任务和领域变化下的持续语义分割方面准备不足。


关键词

  • 持续学习
  • 跨任务和领域
  • 语义分割

在现实世界中,深度学习模型需要处理图像理解任务,并适应不同领域和任务的多样性。领域适应和类别增量学习分别处理了领域和任务的变化,但如何统一解决这两个方面仍然是一个开放问题。我们需要同时考虑输入和标签空间中的语义变化。

我们首先正式引入了任务和领域变化下的持续学习。为了应对跨领域知识的扩展,我们采用了风格迁移技术。当学习增量任务时,风格迁移技术能够有效地扩展跨领域的知识。同时,我们设计了一个稳健的蒸馏框架,在增量领域变化下有效地重新收集任务知识。

我们的框架(LwS,风格化学习)能够在跨所有领域的情况下泛化增量获得的任务知识,表现出对灾难性遗忘的鲁棒性。通过在多个自动驾驶数据集上的广泛实验,我们证明了所提出的方法在处理任务和领域变化下的持续语义分割方面优于现有方法。

转载地址:http://kvubz.baihongyu.com/

你可能感兴趣的文章
Nginx 多端口配置和访问异常问题的排查与优化
查看>>
Nginx 如何代理转发传递真实 ip 地址?
查看>>
Nginx 学习总结(16)—— 动静分离、压缩、缓存、黑白名单、性能等内容温习
查看>>
Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
查看>>
Nginx 学习(一):Nginx 下载和启动
查看>>
nginx 常用指令配置总结
查看>>
Nginx 常用配置清单
查看>>
nginx 常用配置记录
查看>>
nginx 开启ssl模块 [emerg] the “ssl“ parameter requires ngx_http_ssl_module in /usr/local/nginx
查看>>
Nginx 我们必须知道的那些事
查看>>
Nginx 源码完全注释(11)ngx_spinlock
查看>>
Nginx 的 proxy_pass 使用简介
查看>>
Nginx 的 SSL 模块安装
查看>>
Nginx 的优化思路,并解析网站防盗链
查看>>
Nginx 的配置文件中的 keepalive 介绍
查看>>
Nginx 相关介绍(Nginx是什么?能干嘛?)
查看>>
nginx 禁止以ip形式访问服务器
查看>>
NGINX 端口负载均衡
查看>>
Nginx 结合 consul 实现动态负载均衡
查看>>
Nginx 负载均衡与权重配置解析
查看>>