博客
关于我
TPAMI 2024 | 风格化学习:跨任务和领域的持续语义分割
阅读量:466 次
发布时间:2019-03-06

本文共 828 字,大约阅读时间需要 2 分钟。

Learning With Style: Continual Semantic Segmentation Across Tasks and Domains

风格化学习:跨任务和领域的持续语义分割

作者:Marco Toldo; Umberto Michieli; Pietro Zanuttigh


摘要

在现实世界的环境中处理图像理解的深度学习模型必须能够适应不同领域中的广泛任务。领域适应和类别增量学习分别处理领域和任务的可变性,而它们的统一解决方案仍然是一个开放问题。我们同时应对问题的两个方面,考虑到输入和标签空间中的语义变化。我们首先正式引入了任务和领域变化下的持续学习。然后,我们通过使用风格迁移技术来扩展跨领域的知识,当学习增量任务时,以及一个稳健的蒸馏框架,在增量领域变化下有效重新收集任务知识。设计的框架(LwS,风格化学习)能够跨所有遇到的领域泛化增量获得的任务知识,证明对灾难性遗忘具有鲁棒性。在多个自动驾驶数据集上的广泛实验评估表明,所提出的方法优于现有方法,这些方法在处理任务和领域变化下的持续语义分割方面准备不足。


关键词

  • 持续学习
  • 跨任务和领域
  • 语义分割

在现实世界中,深度学习模型需要处理图像理解任务,并适应不同领域和任务的多样性。领域适应和类别增量学习分别处理了领域和任务的变化,但如何统一解决这两个方面仍然是一个开放问题。我们需要同时考虑输入和标签空间中的语义变化。

我们首先正式引入了任务和领域变化下的持续学习。为了应对跨领域知识的扩展,我们采用了风格迁移技术。当学习增量任务时,风格迁移技术能够有效地扩展跨领域的知识。同时,我们设计了一个稳健的蒸馏框架,在增量领域变化下有效地重新收集任务知识。

我们的框架(LwS,风格化学习)能够在跨所有领域的情况下泛化增量获得的任务知识,表现出对灾难性遗忘的鲁棒性。通过在多个自动驾驶数据集上的广泛实验,我们证明了所提出的方法在处理任务和领域变化下的持续语义分割方面优于现有方法。

转载地址:http://kvubz.baihongyu.com/

你可能感兴趣的文章
nat打洞原理和实现
查看>>
NAT技术
查看>>
NAT模式/路由模式/全路由模式 (转)
查看>>
NAT模式下虚拟机centOs和主机ping不通解决方法
查看>>
NAT的两种模式SNAT和DNAT,到底有啥区别?
查看>>
NAT网络地址转换配置实战
查看>>
NAT网络地址转换配置详解
查看>>
navbar navbar-inverse 导航条设置颜色
查看>>
Navicat for MySQL 命令列 执行SQL语句 历史日志
查看>>
Navicat for MySQL 查看BLOB字段内容
查看>>
Navicat for MySQL(Ubuntu)过期解决方法
查看>>
Navicat Premium 12 卸载和注册表的删除
查看>>
Navicat 导入sql文件
查看>>
navicat 添加外键1215错误
查看>>
navicat 系列软件一点击菜单栏就闪退
查看>>
Navicat 设置时间默认值(当前最新时间)
查看>>
navicat 连接远程mysql
查看>>
navicat:2013-Lost connection to MySQL server at ‘reading initial communication packet解决方法
查看>>
Navicate for mysql 数据库设计-数据库分析
查看>>
Navicat下载和破解以及使用
查看>>