博客
关于我
TPAMI 2024 | 风格化学习:跨任务和领域的持续语义分割
阅读量:466 次
发布时间:2019-03-06

本文共 828 字,大约阅读时间需要 2 分钟。

Learning With Style: Continual Semantic Segmentation Across Tasks and Domains

风格化学习:跨任务和领域的持续语义分割

作者:Marco Toldo; Umberto Michieli; Pietro Zanuttigh


摘要

在现实世界的环境中处理图像理解的深度学习模型必须能够适应不同领域中的广泛任务。领域适应和类别增量学习分别处理领域和任务的可变性,而它们的统一解决方案仍然是一个开放问题。我们同时应对问题的两个方面,考虑到输入和标签空间中的语义变化。我们首先正式引入了任务和领域变化下的持续学习。然后,我们通过使用风格迁移技术来扩展跨领域的知识,当学习增量任务时,以及一个稳健的蒸馏框架,在增量领域变化下有效重新收集任务知识。设计的框架(LwS,风格化学习)能够跨所有遇到的领域泛化增量获得的任务知识,证明对灾难性遗忘具有鲁棒性。在多个自动驾驶数据集上的广泛实验评估表明,所提出的方法优于现有方法,这些方法在处理任务和领域变化下的持续语义分割方面准备不足。


关键词

  • 持续学习
  • 跨任务和领域
  • 语义分割

在现实世界中,深度学习模型需要处理图像理解任务,并适应不同领域和任务的多样性。领域适应和类别增量学习分别处理了领域和任务的变化,但如何统一解决这两个方面仍然是一个开放问题。我们需要同时考虑输入和标签空间中的语义变化。

我们首先正式引入了任务和领域变化下的持续学习。为了应对跨领域知识的扩展,我们采用了风格迁移技术。当学习增量任务时,风格迁移技术能够有效地扩展跨领域的知识。同时,我们设计了一个稳健的蒸馏框架,在增量领域变化下有效地重新收集任务知识。

我们的框架(LwS,风格化学习)能够在跨所有领域的情况下泛化增量获得的任务知识,表现出对灾难性遗忘的鲁棒性。通过在多个自动驾驶数据集上的广泛实验,我们证明了所提出的方法在处理任务和领域变化下的持续语义分割方面优于现有方法。

转载地址:http://kvubz.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0061---Netty心跳处理器编写
查看>>
Netty工作笔记0062---WebSocket长连接开发
查看>>
Netty工作笔记0063---WebSocket长连接开发2
查看>>
vue样式穿透 ::v-deep的具体使用
查看>>
Netty工作笔记0065---WebSocket长连接开发4
查看>>
Netty工作笔记0066---Netty核心模块内容梳理
查看>>
Vue基本使用---vue工作笔记0002
查看>>
Netty工作笔记0068---Protobuf机制简述
查看>>
Netty工作笔记0069---Protobuf使用案例
查看>>
Netty工作笔记0070---Protobuf使用案例Codec使用
查看>>
Netty工作笔记0071---Protobuf传输多种类型
查看>>
Netty工作笔记0072---Protobuf内容小结
查看>>
Netty工作笔记0073---Neety的出站和入站机制
查看>>
Netty工作笔记0074---handler链调用机制实例1
查看>>
Netty工作笔记0075---handler链调用机制实例1
查看>>
Netty工作笔记0076---handler链调用机制实例3
查看>>
Netty工作笔记0077---handler链调用机制实例4
查看>>
Netty工作笔记0078---Netty其他常用编解码器
查看>>
Netty工作笔记0079---Log4j整合到Netty
查看>>
Netty工作笔记0080---编解码器和处理器链梳理
查看>>