博客
关于我
TPAMI 2024 | 风格化学习:跨任务和领域的持续语义分割
阅读量:466 次
发布时间:2019-03-06

本文共 828 字,大约阅读时间需要 2 分钟。

Learning With Style: Continual Semantic Segmentation Across Tasks and Domains

风格化学习:跨任务和领域的持续语义分割

作者:Marco Toldo; Umberto Michieli; Pietro Zanuttigh


摘要

在现实世界的环境中处理图像理解的深度学习模型必须能够适应不同领域中的广泛任务。领域适应和类别增量学习分别处理领域和任务的可变性,而它们的统一解决方案仍然是一个开放问题。我们同时应对问题的两个方面,考虑到输入和标签空间中的语义变化。我们首先正式引入了任务和领域变化下的持续学习。然后,我们通过使用风格迁移技术来扩展跨领域的知识,当学习增量任务时,以及一个稳健的蒸馏框架,在增量领域变化下有效重新收集任务知识。设计的框架(LwS,风格化学习)能够跨所有遇到的领域泛化增量获得的任务知识,证明对灾难性遗忘具有鲁棒性。在多个自动驾驶数据集上的广泛实验评估表明,所提出的方法优于现有方法,这些方法在处理任务和领域变化下的持续语义分割方面准备不足。


关键词

  • 持续学习
  • 跨任务和领域
  • 语义分割

在现实世界中,深度学习模型需要处理图像理解任务,并适应不同领域和任务的多样性。领域适应和类别增量学习分别处理了领域和任务的变化,但如何统一解决这两个方面仍然是一个开放问题。我们需要同时考虑输入和标签空间中的语义变化。

我们首先正式引入了任务和领域变化下的持续学习。为了应对跨领域知识的扩展,我们采用了风格迁移技术。当学习增量任务时,风格迁移技术能够有效地扩展跨领域的知识。同时,我们设计了一个稳健的蒸馏框架,在增量领域变化下有效地重新收集任务知识。

我们的框架(LwS,风格化学习)能够在跨所有领域的情况下泛化增量获得的任务知识,表现出对灾难性遗忘的鲁棒性。通过在多个自动驾驶数据集上的广泛实验,我们证明了所提出的方法在处理任务和领域变化下的持续语义分割方面优于现有方法。

转载地址:http://kvubz.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>
Netty常见组件二
查看>>
netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
查看>>
Netty核心模块组件
查看>>
Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
查看>>
Netty源码—2.Reactor线程模型一
查看>>
Netty源码—4.客户端接入流程一
查看>>
Netty源码—4.客户端接入流程二
查看>>
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Netty相关
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>
NetworkX系列教程(11)-graph和其他数据格式转换
查看>>
Networkx读取军械调查-ITN综合传输网络?/读取GML文件
查看>>